Cleaning Validation

Using on-line UV-VIS spectroscopy for rinse monitoring with the new developed flowcell R.V.P. (Reproducible Variable Path length)

Cleaning Validation is a critical aspect in pharmaceutical batch manufacturing. Production run campaigns are followed by downtime periods of 'Change-Over' and this can have a considerable impact on production capacity and profitability.

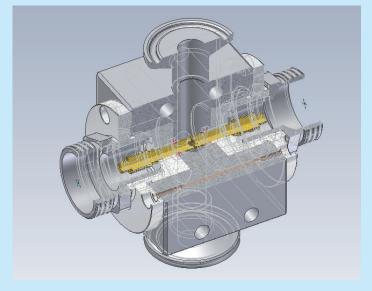


Fig. 1: CV online installation in a pharmaceutical plant.

Normally samples from the wash cycles are measured off-line by HPLC. This processes are time consuming and

Using Process Analytical Technology (PAT) philosophies, is an alternative the installation of an on-line analyser. High sensitivity and fast response time allow the monitoring of cleaning processes in real time. A quick feed back is guaranteed that allows optimum cycle times, reducing dead times and saving costs.

On behalf of affiliated global pharmaceutical groups J&M Analytik AG designed around it's new R.V.P.- flow cell both, close fitted or mobile analysers.

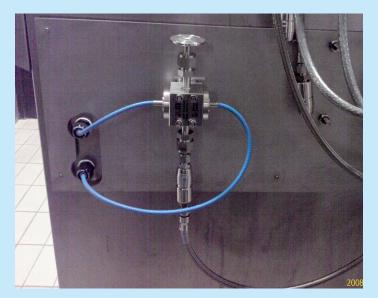


Fig. 2 & Fig. 3: R.V.P. flow cell installed on a mobile CIP- analyzer for bypass operation.

In primary or secondary manufacturing plants, production equipment with cleaning in place (CIP) systems has to be thoroughly cleaned by a validated process before the next production cycle can start. An on- line CIP analyzer gives you quick feed back and ensures that your cycle times are optimal.

Applications

Process monitoring and controlling in chemical-, pharmaceutical-, food industries, biotechnology research and production, environmental monitoring, nearly unlimited (...

Your approach to implement PAT for cleaning in place

	PAT for cleaning process	QC Laboratory
Stage 1	Use process analyzer(s) to visualize and gain	Development of innovative analytical technolo
	insight in the cleaning process.	gies to reduce time for method development,
	Optimize the cleaning process.	validation and sample analysis e.g. UPLC,
	IMS, DART, UV, NIR,	
		Challenge process analyzer(s),
		GMP-analysis of cleaning samples for release
		of equipment
Stage 2	Routine monitoring of optimized cleaning	GMP-analysis of cleaning samples for
	process.	release of equipment.
	Evaluate performance of PAT tool(s).	
Stage 3	In-line cleaning analysis and immediate re-	SWOP TEST
	lease of equipment.	
Stage 4	Real-time control of cleaning process.	SWOP TEST

Fig. 3: Typical mobil CIP process analyzer J&M detector inside

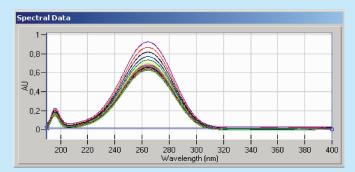


Fig. 5
Graph shows the change in intensity over time in the entire wavelength range from 190 to 400 nm. The spectra were aquired every 5 sec.

Fig. 4: Typical laboratory setup (HPLC) J&M detector inside

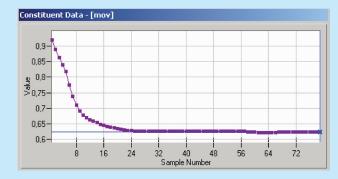


Fig. 6
Graph shows the change in intensity over time for the wavelength at 265 nm.

This example proves the advantages of using J&M instrumentation and software in online analysis applications like reaction monitoring, cleaning validation and blending or mixing procedures.

Please note:

Due to technological progress all specifications can be changed without a further note.